
Algorithm design strategies

Many successful algorithms are based on a similar
technique

Most well-known are:

● Exhaustive Search

● Greedy Approach

● Divide and Conquer

● Dynamic Programming

Main algorithm design strategies

● Exhaustive Computation. Generate every possible candidate solution
and select an optimal solution.

● Greedy. Create next candidate solution one step at a time by using
some greedy choice.

● Divide and Conquer. Divide the problem into non-overlapping
subproblems of the same type, solve each subproblem with the same
algorithm, and combine sub-solutions into a solution to the entire
problem.

● Dynamic Programming. Start with the smallest subproblem and
combine optimal solutions to smaller subproblems into optimal
solution for larger subproblems, until the optimal solution for the
entire problem is constructed.

● Exhaustive Computation

● Greedy Algorithms

● Divide and Conquer Algorithms

● Dynamic Programming

There are many more design techniques

Many successful algorithms are designed using the combination of
several techniques

There are also surprising interesting solutions based on original
insights - which do not use any of these strategies

Main algorithm design strategies

● Exhaustive Computation

● Greedy Algorithms

● Divide and Conquer Algorithms

● Dynamic Programming

Thus, this classification should be used only for inspiration and
not to constrain your creativity by forcing you to stay within a
certain paradigm

Main algorithm design strategies

Main design strategies

● Exhaustive Computation. Generate every possible candidate
solution and select an optimal solution.

● Greedy. Create next candidate solution one step at a time by using some
greedy choice.

● Divide and Conquer. Divide the problem into non-overlapping subproblems of
the same type, solve each subproblem with the same algorithm, and combine
sub-solutions into a solution to the entire problem.

● Dynamic Programming. Start with the smallest subproblem and combine
optimal solutions to smaller subproblems into optimal solution for larger
subproblems, until the optimal solution for the entire problem is constructed.

First - the baseline technique:
Exhaustive Computation

Exhaustive Search
Brute-Force

Generate-and-Test

Exhaustive Search:

a straightforward way to solve a problem, based on the
definition of the problem itself

• In many problems an optimal solution belongs to some
finite set of candidate solutions

• An algorithm based on Exhaustive Computation generates
all candidate solutions and then evaluates each candidate in
turn to select an optimal solution

Enumerating all candidates:
search space

When designing exhaustive algorithms we must first evaluate
the size of the candidate set in order to avoid "combinatorial
explosion"

• Polynomial search space: if the total number of candidates
is polynomial in n, we may think of applying the exhaustive
search

• Exponential search space: if the total number of candidates
is exponential in n, we may apply the exhaustive search to
very small problem sizes only: we must consider other
techniques

https://en.wikipedia.org/wiki/Brute-force_search#Combinatorial_explosion

Exhaustive algorithm
consists of two parts:

• Generating all candidate solutions

• Checking each candidate solution

Generating and checking candidates should be efficient.

Checking usually is, generating usually isn’t

Example: Maximum Sublist problem

Suppose that we have a list of integers, and we want to find a
sublist with the maximum sum.

(A sublist must be contiguous within the list)

We call such a sublist a maximum sublist

Problem instance:

What is the maximum sublist in the following list?

-2 1 -3 4 -1 2 1 -5 4

Maximum Sublist: real-life applications

1. Stock Analysis: suppose we have
some insider information on the
future stock prices of a company
like Apple. We want to maximize
our profit while making only one
buy and one sell transaction to
avoid suspicion.

2. Used in Bioinformatics: identify highly scored regions of
sequences (Example)

3. Used in Image Analysis: identify brightest regions within the
image (2D version of the problem - find the contiguous submatrix
with the largest sum in a matrix) Example: astronomical imaging
problem

https://www.researchgate.net/publication/12531662_A_linear_time_algorithm_for_finding_all_maximal_scoring_subsequences
https://pdfs.semanticscholar.org/7383/24c56dd2aea64ed048db4f3668c38c826fc8.pdf

Input: array A of n integers
Output: A sublist A[i...j] with the maximum possible sum

Input: array A of n integers
Output: The sum of the sublist A[i...j] with the maximum possible value.

Maximum Sublist: variations

Two variations of maximum sublist problem are formalized below:

Problem: maximum sublist (value)

Problem: maximum sublist (sublist)

Maximum Sublist = Subarray

What is the maximum subarray in the following array?

1 -5 4 2 -7 3 6 -1 2 -4 7 -10 2 6 1 -31 -5 4 2 -7 3 6 -1 2 -4 7 -10 2 6 1 -3

Search space estimation:
How many different sublists in total?

Activity 9
Exhaustive search

Maximum Sublist: Algorithm 1

We start with exhaustive algorithm which evaluates the sum
of all O(n2) possible sublists.

We will use this opportunity to practice writing good
pseudocode that is easy to read and has no off-by-one errors.

Maximum Sublist: Algorithm 1

Algorithm max_sublist1(num_list, n)

max ← - ∞
for i from 1 to n-1:

for j from i+1 to n:
sum = 0
for k from i to j:

sum ← sum + num_list[k]
if sum > max then max ← sum

return max

Any logical errors in this code?
Watch for boundary and off-by-one errors.

Maximum Sublist: Algorithm 1

Algorithm max_sublist1(num_list, n)

max ← - ∞
for i from 1 to n-1:

for j from i+1 to n:
sum = 0
for k from i to j:

sum ← sum + num_list[k]
if sum > max then max ← sum

return max

Any logical errors in this code?
Watch for boundary and off-by-one errors.

i is the start of a current
sublist. So, our sublist never
starts at num_list[n]!

Maximum Sublist: Algorithm 1

Algorithm max_sublist1(num_list, n)

max ← - ∞
for i from 1 to n-1:

for j from i+1 to n:
sum = 0
for k from i to j:

sum ← sum + num_list[k]
if sum > max then max ← sum

return max

Any logical errors in this code?
Watch for boundary and off-by-one errors.

j is the end of a current
sublist. So, we never consider
sublists of length 1!

Maximum Sublist: Algorithm 1

Algorithm max_sublist1(num_list, n)

max ← - ∞
for i from 1 to n:

for j from i to n:
sum = 0

for k from i to j:
sum ← sum + num_list[k]

if sum > max then max ← sum

return max

Fixed

Maximum Sublist: Algorithm 1

Algorithm max_sublist1(num_list, n)

max ← - ∞
for i from 1 to n:

for j from i to n:
sum = 0

for k from i to j:
sum ← sum + num_list[k]
if sum > max then max ← sum

return max

So let’s replace them with left/right

It is easy to get confused
about meaning of i and j

1 -5 4 2 -7 3 6 -1 2 -4 7 -10 2 6 1 -31 -5 4 2 -7 3 6 -1 2 -4 7 -10 2 6 1 -3

Left Right

Maximum Sublist: Algorithm 1

Algorithm max_sublist1(num_list, n)

max ← - ∞
for left from 1 to n:

for right from left to n:
sum = 0
for k from left to right:

sum ← sum + num_list[k]
if sum > max then max ← sum

return max

Full and correct exhaustive algorithm

Running time of Algorithm 1
How many different sublists are in a list of length n?

• There are O(n2) sublists.

How much time does it take to evaluate the sum of each sublist with
Algorithm 1?

• Summing up a sublist of length k takes O(k)-time.
In the worst-case this is O(n)-time since the longest sublist has length n.

What is the total runtime of Algorithm 1?

• There are O(n2) sublists, and evaluating each sublist takes O(n)-time.
Therefore, the algorithm takes O(n3)-time.

Can we do better?

Recap: Algorithm design flowchart

Formalizing problem:

input →output

Analyzing problem

Brainstorming solution

Expressing solution in

pseudocode

Proving correctness

Analyzing running time Are we done?

Algorithm designer mantra

● Structure of the input

● New insight

● Idea

“Perhaps the most important principle for the good

algorithm designer is to refuse to be content”

Aho, Hopcroft, Ullman: “The design and

Analysis of Computer Algorithms”, 1974

Mantra: Can we do better?

Algorithm design: infinite loop

Formalizing problem:

input →output

Analyzing problem

Brainstorming solution

Expressing solution in

pseudocode

Proving correctness

Analyzing running time Can we do better?

Meditating on Algorithm 1

The order of the sublists in Algorithm 1 is illustrated
below.

1 -5 4 2 -7

Meditating on Algorithm 1

The order of the sublists in Algorithm 1 is illustrated
below.

1 -5 4 2 -7

Meditating on Algorithm 1

The order of the sublists in Algorithm 1 is illustrated
below.

1 -5 4 2 -7

Meditating on Algorithm 1

The order of the sublists in Algorithm 1 is illustrated
below.

1 -5 4 2 -7

Meditating on Algorithm 1

The order of the sublists in Algorithm 1 is illustrated
below.

1 -5 4 2 -7

Meditating on Algorithm 1

The order of the sublists in Algorithm 1 is illustrated
below.

1 -5 4 2 -7

Meditating on Algorithm 1

The order of the sublists in Algorithm 1 is illustrated
below.

1 -5 4 2 -7

Meditating on Algorithm 1

The order of the sublists in Algorithm 1 is illustrated
below.

1 -5 4 2 -7

Meditating on Algorithm 1

The order of the sublists in Algorithm 1 is illustrated
below.

1 -5 4 2 -7

Meditating on Algorithm 1

The order of the sublists in Algorithm 1 is illustrated
below.

1 -5 4 2 -7

Meditating on Algorithm 1

The order of the sublists in Algorithm 1 is illustrated
below.

1 -5 4 2 -7

Meditating on Algorithm 1

The order of the sublists in Algorithm 1 is illustrated
below.

1 -5 4 2 -7

Meditating on Algorithm 1

The order of the sublists in Algorithm 1 is illustrated
below.

1 -5 4 2 -7

Meditating on Algorithm 1

The order of the sublists in Algorithm 1 is illustrated
below.

1 -5 4 2 -7

Meditating on Algorithm 1

The order of the sublists in Algorithm 1 is illustrated
below.

1 -5 4 2 -7

Meditating on Algorithm 1

The order of the sublists in Algorithm 1 is illustrated
below.

1 -5 4 2 -7

Revisiting Algorithm 1

Algorithm max_sublist1(num_list, n)

max ← - ∞
for left from 1 to n:

for right from left to n:
sum = 0
for k from left to right:

sum ← sum + num_list[k]
if sum > max then max ← sum

return max

sum = x1 + x2 + x3 + x4

sum = x1 + x2 + x3 + x4 + x5

Is immediately followed by:

Look at this summation.
It repeats the same
computation

We could avoid recomputing this sum at every
iteration of the inner loop

Maximum Sublist: Algorithm 2

Algorithm max_sublist2(num_list, n)

max ← - ∞
for left from 1 to n:

sum = 0
for right from left to n:

sum ← sum + num_list[right]
if sum > max then max ← sum

return max

This should be faster than Algorithm 1, since we got rid of the third nested
loop.

What is the time complexity of Algorithm 2?

Maximum Sublist: Algorithm 2

Algorithm max_sublist2(num_list, n)

max ← - ∞
for left from 1 to n:

sum = 0
for right from left to n:

sum ← sum + num_list[right]
if sum > max then max ← sum

return max

The sublists are generated in the same order as in Algorithm 1, but we apply
Optimization: avoiding recomputation between successive candidates

Maximum Sublist: Algorithm 2

Algorithm max_sublist2(num_list, n)

max ← - ∞
for left from 1 to n:

sum = 0
for right from left to n:

sum ← sum + num_list[right]
if sum > max then max ← sum

return max

The algorithm is now O(n2)

Can we do better?

Maximum Sublist: Algorithm 3??

Recall that in both Algorithm 1 and Algorithm 2 we generated
all n2 possible sublists

Is there a smaller natural set of candidate solutions?

1 -5 4 2 -7

Maximum Sublist: Algorithm 3??

Recall that in both Algorithm 1 and Algorithm 2 we generated
all n2 possible sublists

The candidate set has exactly one non-empty max sublist
ending at each position of the list.

Each sublist must end at position 1, 2, 3, 4, or 5. We can
generate 5 different non-empty sublists, one for each end
position, with the maximum sum among all sublists ending at
this position.

Finally, the algorithm will select the max of all candidate
sums.

1 -5 4 2 -7

Exhaustive Search: optimizations

1.Avoid recomputation between successive
candidates (Max-sublist 2)

2.Reduce the size of the candidate set (Max-sublist 3,
Euclidean GCD)

Search space:
polynomial vs. exponential

• Polynomial search space: the max sublist problem had a
polynomial search space, and exhaustive search proved
useful, especially after applying some optimizations
techniques to bring down the degree of the polynomial

• Exponential search space: If the total number of candidates
is exponential in n, the exhaustive search becomes not
feasible - especially for large values of n

Introducing the Thief Problem

The Thief Problem:

• There are n different items in a store

• Item i weighs wi pounds and is worth $vi

• A thief breaks in. He can carry up to W pounds in his

knapsack

• What should he take to maximize the profit of his haul?

Knapsack motivations

• Least wasteful way to use raw materials

• Selecting capital investments and financial portfolios

• Generating keys for the Merkle-Hellman cryptosystem

• …

Exhaustive solution for
the Thief Problem

• Consider every possible subset of items

• Calculate total value and total weight of each subset and

discard if more than W

• Then choose from remaining subsets the one with

maximum total value

Takes Ω(2n) time (for generating subsets)

Knapsack Example

• item 1: 7 lbs, $42

• item 2: 3 lbs, $12

• item 3: 4 lbs, $40

• item 4: 5 lbs, $25

• W = 10

subset total weight total value

Ø 0 $0

{1} 7 $42

{2} 3 $12

{3} 4 $40

{4} 5 $25

{1,2} 10 $54

{1,3} 11 infeasible

{1,4} 12 infeasible

{2,3} 7 $52

{2,4} 8 $37

etc. ...

We have to check 24=16 possibilities

Enumerating all subsets of a set
with n items

1. Loop from 0 to 2n -1
2. For each number get the binary

representation of the number,
e.g. 3 = 0011 (easy in Python:
bin(n))

3. Determine from the binary
representation whether or not to
include an item from the set, e.g.
0011 = [exclude, exclude, include,
include]

This generates a lexicographic
ordering of bits.

0 0000 {}

1 0001 {a}

2 0010 {b}

3 0011 {a, b}

4 0100 {c}

5 0101 {a, c}

6 0110 {b, c}

7 0111 {a, b, c}

8 1000 {d}

9 1001 {a, d}

10 1010 {b, d}

11 1011 {a, b, d}

12 1100 {c, d}

13 1101 {a, c, d}

14 1110 {b, c, d}

15 1111 {a, b, c, d}

Setting on different bits
indicating subsets of n=4 items

Subset generation: bottleneck of
the Exhaustive Knapsack

There are more efficient ordering algorithms (see paper):

• Gray Codes
• Banker’s Sequence

For n = 100, there are 2100 subsets, about 1030.

Assuming a computer capable of checking 108 subsets per second,
we would require about 1022 seconds to generate all subsets of
n=100 items, or about 4 × 1014 years.

If we use Gray codes - the time is half of that. Does it help?

Can we do better?

Yes, see dynamic-programming

https://drive.google.com/file/d/1bBOcDwvpvxDdldISWKzaKjsZ95NqL1dG/view?usp=sharing

The n-Queens Puzzle

Place n queens on an n×n chessboard so that no two
queens attack each other by being in the same
column, row, or diagonal.

Solve

https://www.dr-mikes-math-games-for-kids.com/eight-queens-puzzle.html

Example of backtracking
optimization

Backtracking

https://drive.google.com/file/d/1z6f2Gdk1FpvalwhK8hGumdFxu8mZA1z6/view?usp=sharing

Backtracking algorithm

• Construct solutions systematically - by adding one
component at a time

• Evaluate candidate partial solution:

• If it can be developed further without violating
problem constraints:

• add the next element in order

• Else

• any remaining component does not need to be
considered

• backtrack and replace the last component of the
partial solution with the next option

Three optimization techniques for
Exhaustive Computation

1.Avoid recomputation between successive candidates (Max-
sublist 2)

2.Reduce the size of the candidate set (Max-sublist 3, Euclidean
GCD)

3.Eliminate non-promising candidates during the search: this
technique is called backtracking (n-Queens problem)

