Algorithm design strategies

Many successful algorithms are based on a similar technique

Most well-known are:

- Exhaustive Search
- Greedy Approach
- Divide and Conquer
- Dynamic Programming

Main algorithm design strategies

- Exhaustive Computation. Generate every possible candidate solution and select an optimal solution.
- Greedy. Create next candidate solution one step at a time by using some greedy choice.
- Divide and Conquer. Divide the problem into non-overlapping subproblems of the same type, solve each subproblem with the same algorithm, and combine sub-solutions into a solution to the entire problem.
- Dynamic Programming. Start with the smallest subproblem and combine optimal solutions to smaller subproblems into optimal solution for larger subproblems, until the optimal solution for the entire problem is constructed.

Main algorithm design strategies

- Exhaustive Computation
- Greedy Algorithms
- Divide and Conquer Algorithms
- Dynamic Programming

There are many more design techniques

Many successful algorithms are designed using the combination of several techniques

There are also surprising interesting solutions based on original insights - which do not use any of these strategies

Main algorithm design strategies

- Exhaustive Computation
- Greedy Algorithms
- Divide and Conquer Algorithms
- Dynamic Programming

Thus, this classification should be used only for inspiration and not to constrain your creativity by forcing you to stay within a certain paradigm

Main design strategies

- Exhaustive Computation. Generate every possible candidate solution and select an optimal solution.
- **Greedy.** Create next candidate solution one step at a time by using some greedy choice.
- **Divide and Conquer.** Divide the problem into non-overlapping subproblems of the same type, solve each subproblem with the same algorithm, and combine sub-solutions into a solution to the entire problem.
- **Dynamic Programming.** Start with the smallest subproblem and combine optimal solutions to smaller subproblems into optimal solution for larger subproblems, until the optimal solution for the entire problem is constructed.

First - the baseline technique:

Exhaustive Computation

Exhaustive Search

Brute-Force

Generate-and-Test

Exhaustive Search:

a straightforward way to solve a problem, based on the definition of the problem itself

- In many problems an optimal solution belongs to some finite set of candidate solutions
- An algorithm based on Exhaustive Computation generates all candidate solutions and then evaluates each candidate in turn to select an optimal solution

Enumerating all candidates: search space

When designing exhaustive algorithms we must first evaluate the size of the candidate set in order to avoid "combinatorial explosion"

- **Polynomial search space:** if the total number of candidates is polynomial in *n*, we may think of applying the exhaustive search
- Exponential search space: if the total number of candidates is exponential in *n*, we may apply the exhaustive search to very small problem sizes only: we must consider other techniques

Exhaustive algorithm consists of two parts:

- Generating all candidate solutions
- Checking each candidate solution

Generating and checking candidates should be efficient.

Checking usually is, generating usually isn't

Example: Maximum Sublist problem

Suppose that we have a list of integers, and we want to find a sublist with the maximum sum.

(A *sublist* must be contiguous within the list)

We call such a sublist a maximum sublist

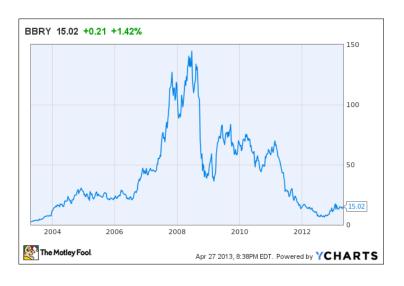
Problem instance:

What is the maximum sublist in the following list?

-2	1	-3	4	-1	2	1	-5	4
----	---	----	---	----	---	---	----	---

Maximum Sublist: real-life applications

1. Stock Analysis: suppose we have some insider information on the future stock prices of a company like Apple. We want to maximize our profit while making only one buy and one sell transaction to avoid suspicion.



- 2. Used in Bioinformatics: identify highly scored regions of sequences (<u>Example</u>)
- 3. Used in Image Analysis: identify brightest regions within the image (2D version of the problem find the contiguous *submatrix* with the largest sum in a matrix) Example: astronomical imaging problem

Maximum Sublist: variations

Two variations of maximum sublist problem are formalized below:

Problem: maximum sublist (value)

Input: array A of n integers

Output: The sum of the sublist A[i...j] with the maximum possible value.

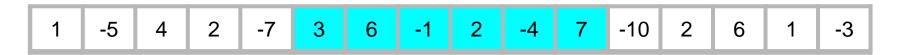
Problem: maximum sublist (sublist)

Input: array A of n integers

Output: A sublist A[i...j] with the maximum possible sum

Maximum Sublist = Subarray

What is the maximum subarray in the following array?



Search space estimation:

How many different sublists in total?

Activity 9

Exhaustive search

We start with exhaustive algorithm which evaluates the sum of all $O(n^2)$ possible sublists.

We will use this opportunity to practice writing good pseudocode that is easy to read and has no off-by-one errors.

Algorithm max_sublist1(num_list, n) max ← - ∞ for i from 1 to n-1: for j from i+1 to n: sum = 0 for k from i to j: sum ← sum + num_list[k] if sum > max then max ← sum return max

Any <u>logical errors</u> in this code? Watch for *boundary* and *off-by-one* errors.

Algorithm max_sublist1(num_list, n) max ← - ∞ for i from 1 to n-1: sum = 0 for k from i to j: sum ← sum + num_list[k] if sum > max then max ← sum return max

Any <u>logical errors</u> in this code? Watch for *boundary* and *off-by-one* errors.

Algorithm max_sublist1(num_list, n) max ← - ∞ for i from 1 to n-1: for j from i+1 to n: sum = 0 for k from i to j: sum ← sum + num_list[k] if sum > max then max ← sum return max

j is the end of a current sublist. So, we never consider sublists of length 1!

Any <u>logical errors</u> in this code? Watch for *boundary* and *off-by-one* errors.

Algorithm max_sublist1(num_list, n) max ← - ∞ for i from 1 to n: for j from i to n: sum = 0 for k from i to j: sum ← sum + num_list[k] if sum > max then max ← sum return max

```
Algorithm max_sublist1(num_list, n)

max ← - ∞

for i from 1 to n:

   for j from i to n:

    sum = 0

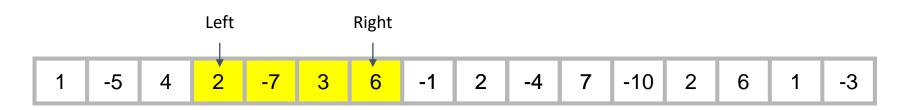
    for k from i to j:

       sum ← sum + num_list[k]

       if sum > max then max ← sum

return max
```

It is easy to get confused about meaning of i and j



So let's replace them with left/right

Algorithm max_sublist1(num_list, n) max ← - ∞ for left from 1 to n: for right from left to n: sum = 0 for k from left to right: sum ← sum + num_list[k] if sum > max then max ← sum return max

Full and correct exhaustive algorithm

Running time of Algorithm 1

How many different sublists are in a list of length *n*?

• There are O(n²) sublists.

How much time does it take to evaluate the sum of each sublist with Algorithm 1?

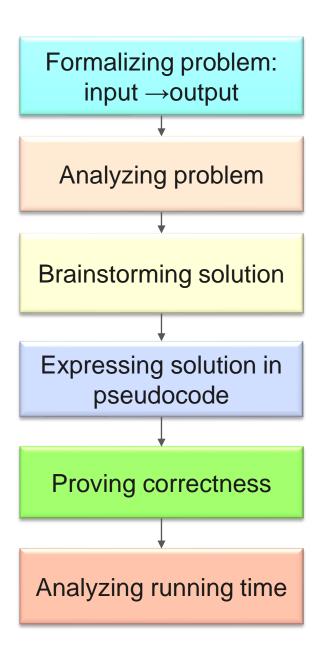
Summing up a sublist of length k takes O(k)-time.
 In the worst-case this is O(n)-time since the longest sublist has length n.

What is the total runtime of Algorithm 1?

• There are $O(n^2)$ sublists, and evaluating each sublist takes O(n)-time. Therefore, the algorithm takes $O(n^3)$ -time.

Can we do better?

Recap: Algorithm design flowchart



Are we done?

Algorithm designer mantra

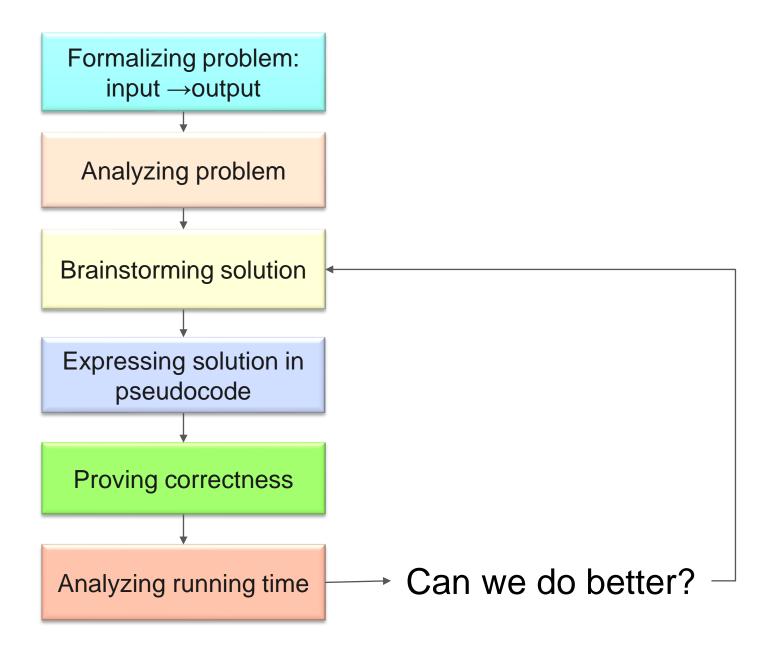
"Perhaps the most important principle for the good algorithm designer is to refuse to be content"

Aho, Hopcroft, Ullman: "The design and Analysis of Computer Algorithms", 1974

- Structure of the input
- New insight
- Idea

Mantra: Can we do better?

Algorithm design: infinite loop



The order of the sublists in Algorithm 1 is illustrated below.

The order of the sublists in Algorithm 1 is illustrated below.

2

-7

The order of the sublists in Algorithm 1 is illustrated below.

The order of the sublists in Algorithm 1 is illustrated below.

The order of the sublists in Algorithm 1 is illustrated below.

The order of the sublists in Algorithm 1 is illustrated below.

The order of the sublists in Algorithm 1 is illustrated below.

The order of the sublists in Algorithm 1 is illustrated below.

The order of the sublists in Algorithm 1 is illustrated below.

The order of the sublists in Algorithm 1 is illustrated below.

The order of the sublists in Algorithm 1 is illustrated below.

The order of the sublists in Algorithm 1 is illustrated below.

The order of the sublists in Algorithm 1 is illustrated below.

1 -5 4 2 -7

The order of the sublists in Algorithm 1 is illustrated below.

1 -5 4 2 -7

The order of the sublists in Algorithm 1 is illustrated below.

The order of the sublists in Algorithm 1 is illustrated below.

1 -5 4 2 -7

Revisiting Algorithm 1

Algorithm max_sublist1(num_list, n) $max \leftarrow -\infty$ for left from 1 to n: for right from left to n: sum = 0 for k from left to right: sum \leftarrow sum + num_list[k] if sum > max then max \leftarrow sum $sum = x_1 + x_2 + x_3 + x_4$ Is immediately followed by: sum = $x_1 + x_2 + x_3 + x_4 + x_5$

We could avoid recomputing this sum at every iteration of the inner loop

Maximum Sublist: Algorithm 2

```
Algorithm max_sublist2(num_list, n)

max ← - ∞

for left from 1 to n:

sum = 0

for right from left to n:

sum ← sum + num_list[right]

if sum > max then max ← sum

return max
```

This should be faster than Algorithm 1, since we got rid of the third nested loop.

What is the time complexity of Algorithm 2?

Maximum Sublist: Algorithm 2

```
Algorithm max_sublist2(num_list, n)

max ← - ∞

for left from 1 to n:

sum = 0

for right from left to n:

sum ← sum + num_list[right]

if sum > max then max ← sum

return max
```

The sublists are generated in the same order as in Algorithm 1, but we apply **Optimization: avoiding recomputation between successive candidates**

Maximum Sublist: Algorithm 2

```
Algorithm max_sublist2(num_list, n)

max ← - ∞

for left from 1 to n:

sum = 0

for right from left to n:

sum ← sum + num_list[right]

if sum > max then max ← sum

return max
```

The algorithm is now O(n²)

Can we do better?

Maximum Sublist: Algorithm 3??

Recall that in both Algorithm 1 and Algorithm 2 we generated all n² possible sublists

Is there a smaller natural set of candidate solutions?

Maximum Sublist: Algorithm 3??

Recall that in both Algorithm 1 and Algorithm 2 we generated all n² possible sublists

The candidate set has exactly one non-empty max sublist ending at each position of the list.

Each sublist must end at position 1, 2, 3, 4, or 5. We can generate 5 different non-empty sublists, **one for each end position**, with the maximum sum among all sublists ending at this position.

Finally, the algorithm will select the max of all candidate sums.

Exhaustive Search: optimizations

- 1.Avoid recomputation between successive candidates (Max-sublist 2)
- 2.Reduce the size of the candidate set (Max-sublist 3, Euclidean GCD)

Search space: polynomial vs. exponential

Polynomial search space: the max sublist problem had a
polynomial search space, and exhaustive search proved
useful, especially after applying some optimizations
techniques to bring down the degree of the polynomial

• Exponential search space: If the total number of candidates is exponential in *n*, the exhaustive search becomes not feasible - especially for large values of *n*

Introducing the Thief Problem

The **Thief** Problem:

- There are *n* different items in a store
- Item i weighs w_i pounds and is worth \$v_i
- A thief breaks in. He can carry up to W pounds in his knapsack
- What should he take to maximize the profit of his haul?

Knapsack motivations

- Least wasteful way to use raw materials
- Selecting capital investments and financial portfolios
- Generating keys for the Merkle-Hellman cryptosystem

• ...

Exhaustive solution for the Thief Problem

- Consider every possible subset of items
- Calculate total value and total weight of each subset and discard if more than W
- Then choose from remaining subsets the one with maximum total value

Takes $\Omega(2^n)$ time (for generating subsets)

Knapsack Example

• item 1: 7 lbs, \$42

• item 2: 3 lbs, \$12

• item 3: 4 lbs, \$40

• item 4: 5 lbs, \$25

• W = 10

subset	total weight	total value
Ø	0	\$0
{1}	7	\$42
{2}	3	\$12
{3}	4	\$40
{4}	5	\$25
{1,2}	10	\$54
{1,3}	11	infeasible
{1,4}	12	infeasible
{2,3}	7	\$52
{2,4}	8	\$37
etc		

We have to check 2⁴=16 possibilities

Enumerating all subsets of a set with *n* items

- 1. Loop from 0 to 2^n-1
- 2. For each number get the binary representation of the number,e.g. 3 = 0011 (easy in Python: bin(n))
- Determine from the binary representation whether or not to include an item from the set, e.g. 0011 = [exclude, exclude, include, include]

This generates a *lexicographic* ordering of bits.

0	0000	{}
1	0001	{a}
2	0010	{b}
3	0011	{a, b}
4	0100	{c}
5	0101	{a, c}
6	0110	{b, c}
7	0111	{a, b, c}
8	1000	{d}
9	1001	{a, d}
10	1010	{b, d}
11	1011	{a, b, d}
12	1100	{c, d}
13	1101	{a, c, d}
14	1110	{b, c, d}
15	1111	{a, b, c, d}

Setting on different bits indicating subsets of *n*=4 items

Subset generation: bottleneck of the Exhaustive Knapsack

There are more efficient ordering algorithms (see <u>paper</u>):

- Gray Codes
- Banker's Sequence

For **n** = **100**, there are 2^{100} subsets, about 10^{30} .

Assuming a computer capable of checking 10^8 subsets per second, we would require about 10^{22} seconds to generate all subsets of n=100 items, or about 4×10^{14} years.

If we use Gray codes - the time is half of that. Does it help?

Can we do better?

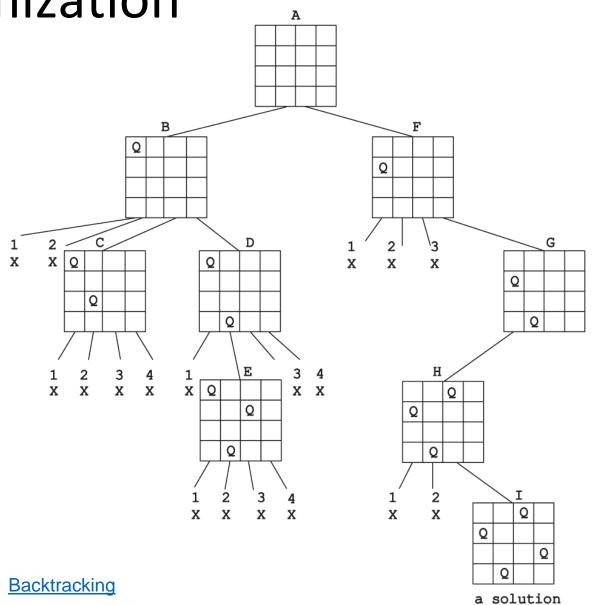
Yes, see dynamic-programming

The n-Queens Puzzle

Place *n* queens on an *n*×*n* chessboard so that no two queens attack each other by being in the same column, row, or diagonal.

<u>Solve</u>

Example of backtracking optimization



Backtracking algorithm

- Construct solutions systematically by adding one component at a time
- Evaluate candidate partial solution:
 - If it can be developed further without violating problem constraints:
 - add the next element in order
 - Else
 - any remaining component does not need to be considered
 - backtrack and replace the last component of the partial solution with the next option

Three optimization techniques for Exhaustive Computation

- 1. Avoid recomputation between successive candidates (Maxsublist 2)
- 2.Reduce the size of the candidate set (Max-sublist 3, Euclidean GCD)
- 3. Eliminate non-promising candidates during the search: this technique is called *backtracking* (n-Queens problem)